Author information
1School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK.
2School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
3School of Chemistry, Faculty of Engineering and Physical sciences, University of Southampton, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK.
4School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK; Division of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
5Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UC Louvain, Université Catholique de Louvain, Brussels, Belgium; Welbio department, WEL Research Institute, Wavre, Belgium.
6Department of Medicine, University of Verona, Italy; Metabolic Diseases Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy.
7School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK.
8School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK. Electronic address: C.D.Byrne@soton.ac.uk.
9School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK. Electronic address: J.Sethi@soton.ac.uk.
Abstract
Background and aims: Subcutaneous adipose tissue (SAT) dysfunction contributes to NAFLD pathogenesis and may be influenced by the gut microbiota. Whether transcript profiles of SAT are associated with liver fibrosis and are influenced by synbiotic treatment (that changes the gut microbiome) is unknown. We investigated: (a) whether the presence of clinically significant, ≥F2 liver fibrosis associated with adipose tissue (AT) dysfunction, differential gene expression in SAT, and/or a marker of tissue fibrosis (Composite collagen gene expression (CCGE)); and (b) whether synbiotic treatment modified markers of AT dysfunction and the SAT transcriptome.
Methods: Sixty-two patients with NAFLD (60 % men) were studied before and after 12 months of treatment with synbiotic or placebo and provided SAT samples. Vibration-controlled transient elastography (VCTE)-validated thresholds were used to assess liver fibrosis. RNA-sequencing and histological analysis of SAT were performed to determine differential gene expression, CCGE and the presence of collagen fibres. Regression modelling and receiver operator characteristic curve analysis were used to test associations with, and risk prediction for, ≥F2 liver fibrosis.
Results: Patients with ≥F2 liver fibrosis (n = 24) had altered markers of AT dysfunction and a SAT gene expression signature characterised by enrichment of inflammatory and extracellular matrix-associated genes, compared to those with <F2 fibrosis (n = 38). Differences in transcript profiles between patients with vs without ≥F2 liver fibrosis were largely explained by adjusting for differences in HOMA-IR. Gut microbiome-modifying synbiotic treatment did not change SAT transcriptomic profiles or circulating inflammatory/adipokine markers. SAT CCGE values were independently associated with (8.38 (1.72-40.88), p = 0.009), and were a good predictor of, ≥F2 fibrosis (AUROC 0.79, 95 % CI 0.69-0.90). Associations between SAT transcriptomic profiles and ≥F2 fibrosis were reproduced using end-of-trial data.
Conclusion: A differential gene expression signature in SAT associates with ≥F2 liver fibrosis is explained by a measure of systemic insulin resistance and is not changed by synbiotic treatment. SAT CCGE values are a good predictor of ≥F2 liver fibrosis in NAFLD.