The summaries are free for public
use. The Chronic Liver Disease
Foundation will continue to add and
archive summaries of articles deemed
relevant to CLDF by the Board of
Trustees and its Advisors.
Abstract Details
Hepatic Encephalopathy: From Metabolic to Neurodegenerative
Neurochem Res. 2021 Jun 15. doi: 10.1007/s11064-021-03372-4. Online ahead of print.
Rafael Ochoa-Sanchez1, Farzaneh Tamnanloo1, Christopher F Rose2
Author information
1Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, 900, rue Saint-Denis Pavillon R, R08.422, Montreal, QC, H2X-0A9, Canada.
2Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, 900, rue Saint-Denis Pavillon R, R08.422, Montreal, QC, H2X-0A9, Canada. christopher.rose@umontreal.ca.
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome of both acute and chronic liver disease. As a metabolic disorder, HE is considered to be reversible and therefore is expected to resolve following the replacement of the diseased liver with a healthy liver. However, persisting neurological complications are observed in up to 47% of transplanted patients. Several retrospective studies have shown that patients with a history of HE, particularly overt-HE, had persistent neurological complications even after liver transplantation (LT). These enduring neurological conditions significantly affect patient's quality of life and continue to add to the economic burden of chronic liver disease on health care systems. This review discusses the journey of the brain through the progression of liver disease, entering the invasive surgical procedure of LT and the conditions associated with the post-transplant period. In particular, it will discuss the vulnerability of the HE brain to peri-operative factors and post-LT conditions which may explain non-resolved neurological impairment following LT. In addition, the review will provide evidence; (i) supporting overt-HE impacts on neurological complications post-LT; (ii) that overt-HE leads to permanent neuronal injury and (iii) the pathophysiological role of ammonia toxicity on astrocyte and neuronal injury/damage. Together, these findings will provide new insights on the underlying mechanisms leading to neurological complications post-LT.